РЕЗОЛЮЦИЯ

ТРЕНИНГОВЫЙ КУРС «ИСПОЛЬЗОВАНИЕ ДНК-ТЕХНОЛОГИЙ ДЛЯ ИДЕНТИФИКАЦИИ И ИЗУЧЕНИЯ ИНВАЗИВНЫХ И НАХОДЯЩИХСЯ ПОД УГРОЗОЙ ИСЧЕЗНОВЕНИЯ ВИДОВ»

г. Минск, 20 – 30 августа 2018 г.

Проведен в рамках следующих проектов:

Глобальная Таксономическая Инициатива «Создание национальной и региональной сети для изучения чужеродных видов с использованием ДНК-технологий в качестве инструмента для решения проблем, связанных с определением таксономической принадлежности» (финансовую поддержку оказывает Японский Фонд Биологического разнообразия);

Инициатива «**БиоМост**» «Передача технологии ДНК-штрихкодирования для инвентаризации и мониторинга редких и находящихся под угрозой исчезновения видов в Беларуси и других странах Центральной и Восточной Европы» (финансовую поддержку оказывает правительство Республики Корея).

ВВЕДЕНИЕ

Биологическое разнообразие живых организмов жизненно важный фактор для функционирования экосистем. Активное влияние человека на окружающую природу (осушение болот, создание искусственных водоемов, расширение сельскохозяйственных территорий, вырубка лесов, строительство дорог и жилых зданий и т. д.) и наблюдающееся в последние десятилетия изменение климата ухудшают условия существования видов и приводят к сокращению их численности и даже к исчезновению. Еще одной причиной снижения биологического разнообразия являются инвазивные виды. Редкие и исчезающие виды растений характеризуются низкой адаптационной способностью к указанным выше факторам, что приводит к потере ценных генотипов и снижению биоразнообразия в целом. Своевременное принятие соответствующих мер позволит сохранить биологическое разнообразие флоры и фауны и функционирование экосистем.

Новая генетическая методика ДНК-штрихкодирования, разработанная в Канаде и получившая широкое распространение в других странах, используется как в научной (ДНК-идентификация для таксономии, инвентаризация генетических ресурсов, своевременное обнаружение инвазивных видов, др.), так и в практической деятельности (борьба с браконьерством, например). Она особенно эффективна как менее затратный метод в таких случаях, когда требуется проанализировать большое количество образцов.

Данный проект направлен на подготовку специалистов по использованию технологии ДНК-штрихкодирования как одного из современных молекулярно-генетических методов для быстрого и эффективного скрининга видового разнообразия флоры и фауны с целью выявления редких и находящихся на грани исчезновения видов, а также изучения инвазивных и чужеродных видов (выявление, мониторинг динамики распространения), с целью разработки природоохранных мер и обеспечения устойчивого использования разнообразия.

Тренинговый курс по использованию технологии ДНК-штрихкодирования для специалистов стран Центральной и Восточной Европы и Центральной Азии организован при содействии Секретариата Конвенции о биологическом

разнообразии в рамках совместного мероприятия по выполнению следующих проектов, прошедших конкурсный отбор в следующих международных инициативах, действующих при Конвенции ООН о биологическом разнообразии:

Глобальная Таксономическая Инициатива «Создание национальной и региональной сети для изучения чужеродных видов с использованием ДНК-технологий в качестве инструмента для решения проблем, связанных с определением таксономической принадлежности» (финансовую поддержку оказывает Японский Фонд Биологического разнообразия);

Инициатива «**БиоМост**» «Передача технологии ДНК-штрихкодирования для инвентаризации и мониторинга редких и находящихся под угрозой исчезновения видов в Беларуси и других странах Центральной и Восточной Европы» (финансовую поддержку оказывает правительство Республики Корея).

Проект Глобальной Таксономической Инициативы «Создание национальной и региональной сети для изучения чужеродных видов с использованием ДНК-технологий в качестве инструмента для решения проблем связанных с определением таксономической принадлежности»

Цель проекта:

Создание национальной и региональной сети для быстрого обнаружения и изучения чужеродных видов с использованием ДНК-технологий.

Задачи проекта:

- Проверить существующий список водных чужеродных видов Беларуси (Украины, Молдовы, Армении) с использованием ДНК-баркодинга;
- Создать национальную / региональную справочную библиотеку ДНК-баркодов чужеродных видов;
- Пополнить Республиканский банк ДНК новыми видами (не менее 25);
- Помочь стажерам стать компетентными пользователями и лицами, вносящими вклад в пополнение баз данных ДНК-баркодов таких как BOLD и GenBank.

Полученные результаты по проекту:

- 1. Частично проверен список водных чужеродных видов рыб Беларуси, Украины, Грузии и ракообразных Грузии и Армении.
- 2. Разработана структура региональной справочной библиотеки ДНК-баркодов водных чужеродных видов.
- 3. Генетические последовательности, полученные в результате анализа образцов на генетическом анализаторе Applied Biosystems, подготовлены для депонирования в базу данных BOLD.
- 4. Создана региональная сеть специалистов по изучению водных чужеродных видов для сотрудничества между институтами странпартнеров как основа для создания региональной сети «Штрих-код жизни».

Проект Инициативы «БиоМост»

«Передача технологии ДНК-штрихкодирования для инвентаризации и мониторинга редких и находящихся под угрозой исчезновения видов в Беларуси и других странах Центральной и Восточной Европы»

Цель проекта: Внести вклад в общую цель содействия Беларуси и другим странам Центральной и Восточной Европы и Центральной Азии (Армения, Казахстан, Литва, Молдова, Таджикистан, Украина и др.) по использованию современных молекулярно-генетических технологий, таких как ДНК штрихкодирование, для идентификации редких и находящихся на грани исчезновения видов (инвентаризация генетических ресурсов) и мониторинга биологического разнообразия.

Задачи проекта:

- Провести тренинг группы специалистов из Беларуси и других стран Центральной и Восточной Европы и Центральной Азии, включающий ознакомление с общей программой глобальной таксономической инициативы и методическим подходам и приемам, используемым при сборе образцов организмов для их последующего анализа.
- Разработать прототип Региональной референсной библиотеки ДНК-штрихкодов как самостоятельной структурной единицы базы данных Республиканского банка ДНК человека, животных, растений и микроорганизмов (Беларусь).
- Создать региональную сеть специалистов, использующих технологию ДНК-штрихкодирования, для обмена научно-методической информацией и проведения практических семинаров по использованию методов ДНК-идентификации для таксономических целей.
- Разработать проектное предложение по усилению региональной кооперации стран по развитию инициативы ДНК-штрихкодирования.
- Помочь стажерам стать компетентными пользователями и лицами, вносящими вклад в пополнение баз данных ДНК-баркодов таких как BOLD и GenBank.

Полученные результаты по проекту:

- Проведено изучение 27 видов растений с использованием метода ДНК-штрихкодирования.
- Генетические последовательности, полученные в результате анализа образцов на генетическом анализаторе Applied Biosystems, подготовлены для депонирования в базу данных BOLD (27 видов).
- Разработан прототип региональной справочной библиотеки ДНК-штрихкодов как структурной единицы базы данных Республиканского банка ДНК человека, животных, растений и микроорганизмов (Беларусь).
- Создана региональная сеть специалистов для сотрудничества между научно-исследовательскими и другими заинтересованными учреждениями стран-партнеров по изучению редких и находящихся на грани

исчезновения видов растений как основы для создания региональной сети «Штрих-код жизни».

РЕЗУЛЬТАТЫ СОВМЕСТНОГО МЕРОПРИЯТИЯ

В рамках выполнения совместного мероприятия были сделаны следующие доклады:

- 1. Обзор программы глобальной таксономической инициативы и обзор других исследовательских программ в Канаде. Докладчик: к.б.н. Алексей Борисенко, заместитель директора, отдел международного сотрудничества, Гуэльфский Университет, Канада.
- 2. ДНК-штрихкодирование как инструмент быстрой идентификации видов животных и растений, инвентаризации и сохранения генетических ресурсов. Докладчики: к.б.н. Т.П. Липинская, НПЦ НАН Беларуси по биоресурсам; к.б.н. Е.П. Михаленко, ИГЦ НАН Беларуси.
- 3. ДНК-штрихкодирование как инструмент быстрой идентификации видов животных и растений, инвентаризации и сохранения генетических ресурсов используемый также В качестве исследовательского образовательного инструмента Белорусском государственном В университете. H.B. Докладчик: к.б.н. Воронова, Белорусский государственный университет.
- 4. Инвазивные чужеродные виды и стратегия в данной области. Докладчик: д.б.н. В.П. Семенченко, член-корреспондент НАН Беларуси, НПЦ НАН Беларуси.
- 5. О Конвенции о международной торговле видами дикой фауны и флоры, находящимися под угрозой исчезновения СИТЕС. Докладчик: к.б.н. Р.В. Новицкий, НПЦ НАН Беларуси по биоресурсам.
- 6. Введение в Нагойский протокол к Конвенции о биологическом разнообразии международный механизм регулирования доступа к генетическим ресурсам и совместного использования выгод. Докладчик: к.б.н. Е.Н. Макеева, ИГЦ НАН Беларуси.
- 7. Ход выполнения Глобального проекта ПРООН-ГЭФ «Усиление людских ресурсов, правовых систем и институционального потенциала для реализации Нагойского протокола в Республике Беларусь». Докладчик: к.б.н. Е.Н. Макеева, ИГЦ НАН Беларуси.
- 8. Практический опыт передачи генетических ресурсов: примеры и порядок оформления необходимых документов. Докладчик: К.А. Пантелей, ИГЦ НАН Беларуси.

Прослушаны лекции по молекулярной генетике и теории и практике применения ДНК-штрихкодирования

- <u>Теоретический курс</u> «Введение в штриховое кодирование ДНК и систему BOLD». Докладчик: Алексей Борисенко, кандидат наук, заместитель директора, отдел международного сотрудничества, Гуэльфский Университет, Канада.
- Практический учебный курс по основам молекулярной генетики.

- Докладчик в группе по изучению объектов животного происхождения: А. Молдован, Лаборатория систематики и молекулярной филогении, Институт зоологии, Молдовский государственный университет, Молдова.

Докладчик в группе по изучению объектов растительного происхождения: Е.И. Кузьминова.

- Биологическая информатика и анализ мегаданных:
 - Докладчики: Алексей Борисенко, кандидат наук, заместитель директора, отдел международного сотрудничества, Гуэльфский Университет, Канада.
 - Н.В. Воронова, к.б.н., Белорусский государственный университет.
- Введение в ДНК-штрихкодирование животных. Загрузка данных в системы BOLD, BLAST, MEGA. Докладчик: Т.П. Липинская, к.б.н., НПЦ НАН Беларуси по биоресурсам.
- Введение в ДНК-штрихкодирование растений. Загрузка данных в системы BOLD, BLAST, MEGA. Докладчик: М. Кузмина, Гуэльфский Университет, Канада.

Проведены практические занятия в двух группах, организованных по признаку «объект изучения»: группа по изучению водных животныхи группа по изучению растений.

Лабораторные занятия проходили в НПЦ НАН Беларуси по биоресурсам и в ИГЦ НАН Беларуси, соответственно. Секвенирование проводилось в Центре коллективного пользования «ГЕНОМ» ИГЦ НАН Беларуси.

Участниками семинара отмечено, что:

В современных условиях возрастающего прессинга на живую природу, как антропогенных факторов, так и изменений климата, тематика тренингового курса «Использование ДНК-технологий для идентификации и изучения инвазивных и находящихся под угрозой исчезновения видов» актуальна и представляет интерес для стран, которые они представляют.

ПОСТАНОВИЛИ

- 1. Создать Региональную сеть специалистов по ДНК-штрихкодированию для обеспечения активного сотрудничества специалистов стран партнеров и обмена информацией по теоретическим и практическим аспектам использования метода ДНК-штрихкодирования.
- 2. Создать Региональный координационный совет по ДНК-штрихкодированию в составе Макеевой Е.Н., Липинской Т.П. (Беларусь) и А. Лозан, А. Молдован (Молдова) для координации деятельности специалистов по разработке региональных проектов по изучению биологического

- разнообразия с использованием метода ДНК-штрихкодирования как одного из современных и эффективных молекулярно-генетических методов, используемых для таксономии, а также для организации семинаров и тренинговых курсов.
- 3. Разработать прототип Региональной референсной библиотеки ДНК штрихкодов водных животных на базе лаборатории гидробиологии НПЦ по биоресурсам.
- 4. Разработать прототип Региональной референсной библиотеки ДНК штрихкодов растений на базе Республиканского банка ДНК человека, животных, растений и микроорганизмов Института генетики и цитологии НАН Беларуси.